

Jožef Stefan Institute

Reactor Engineering Division

Research Based Education as a Necessary Infrastructure for Sustainable Development of Nuclear Energy

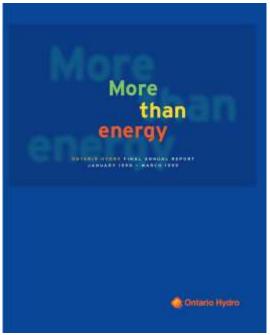
Leon CIZELJ, Iztok TISELJ, Ivo KLJENAK

Reactor Engineering Division Jozef Stefan Institute Ljubljana, Slovenia

Introduction (1/2)

- Dwindling public acceptance: one of major challenges that face nuclear industry and sustainability of nuclear energy.
- On one hand: low impact on health and environment supported by scientific and technical knowledge.
- On the other hand: <u>public does not acknowledge</u> this (although most people in EU trust scientists more than regulators, government, media and industry).
- ☐ Yet: both <u>regulatory authorities</u> and <u>industry</u> in some countries losing interest for cooperation with higher education and research establishments.
- **□** Perceptions:
- further research cannot bring much to plant safe operation
- higher education might be fully substituted by professional training.

Introduction (2/2)

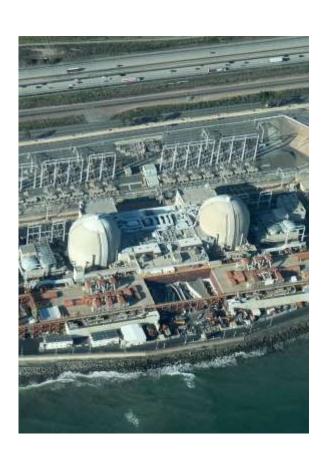

- This perception might lead to deterioration of nuclear safety-related research and higher education (national infrastructure for nuclear safety).
- Fortunately, no nuclear incidents directly caused by deterioration of research and education yet.
- This paper:
 - incidents and accident caused by deteriorated infrastructures and inadequate safety cultures,
 - differences in safety cultures,
 - nuclear energy may improve public trust and safety record by stronger commitment towards research-based education and science-based decision making in industry and regulatory organizations.

Example of deteriorated infrastructure (1): Ontario Hydro "Meltdown" 1997

- Corporate, not nuclear meltdown
- > 1997: Internal investigation at Ontario Hydro **Nuclear (Canada, 19 nuclear units)**
- Flaws found:
 - lack of managerial leadership,
 - insufficient understanding of standards and practices ... in nuclear operations,
 - decisions dominated by production mentality,
 - serious shortages of key management, supervisory and some technical skills,
- Result: 7 units shut down (some permanently)
- **Deteriorating infrastructure and safety culture**

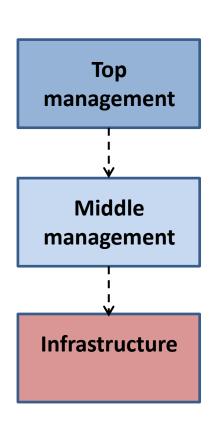
Example of deteriorated infrastructure (2): Broken rail causing train derailment 2000

- > 17 October 2000: train derailment south of **Hatfield Station (UK)**
 - 4 passengers killed, 70 injured
 - **Cause: rail fracture and fragmentation**
- Lack of proper maintenance of tracks by "infrastructure controler"
- Before accident: responsibility for safety of tracks and wheels in different business units.
- After accident: management of wheels and tracks again under single control.
- **Development of events clearly consequence** of deteriorated infrastructure and safety culture

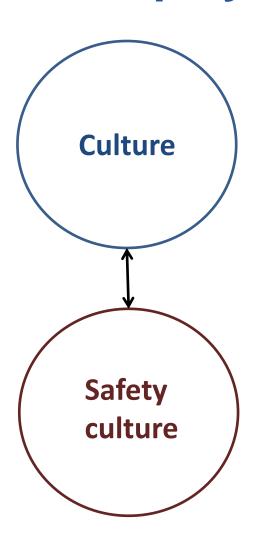


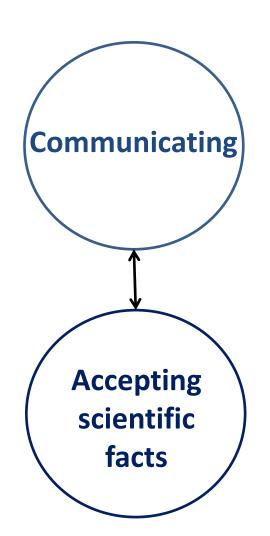
Example of deteriorated infrastructure (3): Closure of San Onofre nuclear units 2013

- 2 units operated by Southern California Edison
 - Steam generators (SG) replaced 2009 and 2010
 - Tube vibrations and premature leakings
 - Permanent shutdown (economic reasons) in 2013
- Causes
 - Faulty design of replacement SGs
 - Poor documentation of design changes in original SGs
- Deteriorating infrastructure: regulatory oversight and design bases

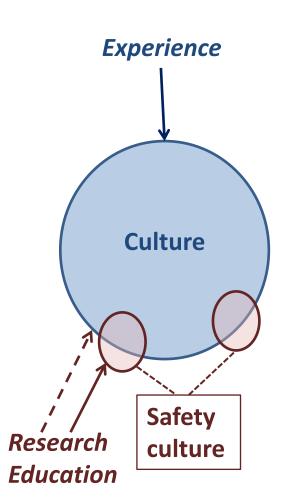


Summary of examples


- > Severely deteriorated infrastructures caused severe consequences.
- Middle management responsible for the infrastructure not able to recognize and/or prevent deterioration.
- Supervisors (top management, regulators) did not provide sufficient ressources, access to knowledge and/or adequate supervision.
- Deterioration of infrastructures, if detected on time, could have been fully prevented with existing knowledge, e.g. without further research.
- Deterioration of infrastructure assisted by deteriorated safety cultures.

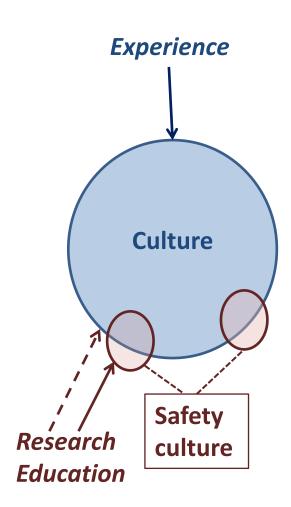


Interplay of different cultures



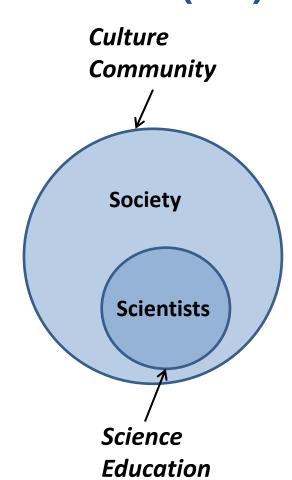
Culture & safety culture (1/2)

- Safety culture of every individual important for detection and neutralization of known and potential threats.
- Safety culture influenced by assumptions, beliefs, education, ability for critical thinking, etc.
- Interplay between safety culture and culture of society:
 - <u>Culture of society</u> developed mostly on experience of preceding generations and slowly takes influences from research and education.
 - <u>Safety culture</u> designed through research and education and progresses fast with influences from experience and also further research and education.
- Consequence: there could be many successful safety cultures within a single culture of a society.



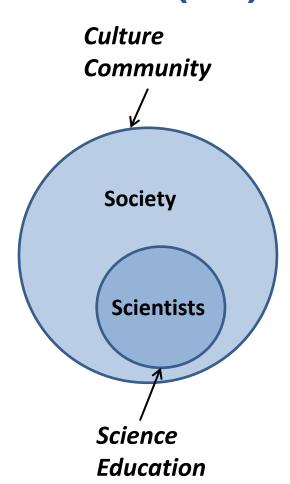
Culture & safety culture (2/2)

- An individual typically raised to live in a culture must continuously adapt to the changes in such culture.
- An individual educated and trained to perform within safety or corporate culture must continuously be educated and trained to adapt to changes.
- Learning from experience shall be systematically accompanied with learning from best available scientific knowledge and operational experience.



Communicating & accepting scientific facts (1/2)

- Many facts accepted by scientific community may not be accepted by society at large (egg. nuclear having lowest impacts on public health; climate change threats).
- "The "beliefs" individuals form about a societal risk such as climate change are not of a piece; rather they reflect the distinct clusters of inferences that individuals draw as they engage <u>information for two</u> <u>distinct ends</u>:
 - —to gain access to the <u>collective knowledge</u> furnished by science,
 - —and to enjoy the <u>sense of identity enabled by</u>
 <u>membership</u> in a community defined by particular
 cultural commitments." (D.M.Kahan, 2014)



Communicating & accepting scientific facts (2/2)

- Individuals give priority to beliefs rooted in community or culture rather than to knowledge acquired from science (and education).
- Communication between "nuclear" and "non-nuclear" communities or cultures easily dominated by affiliations and beliefs over scientific facts.
- "Communication barrier" probably among fundamental causes leading to conflicts between cultures.
- Similar communication barriers *probably* exist between members of different nuclear safety and/or corporate cultures, e.g. industry, academia, regulators.

Conclusions

Ч	Presented incidents and accident in general enabled or caused by interplay of different corporate and safety cultures.
	Communication of available knowledge did not penetrate between different levels of management within company or between different organizations.
	Successful communication between members of different communities or cultures may put much stronger trust to affiliations of communicators than scientific relevance of information.
	Similar communication barriers possibly exist between nuclear stakeholders and general public.
	To start changing this situation: reaching to science and higher education organizations in corporate safety cultures.

Research Based Education as a Necessary Infrastructure for Sustainable Development of Nuclear Energy

Leon CIZELJ, Iztok TISELJ, Ivo KLJENAK

Reactor Engineering Division Jozef Stefan Institute Ljubljana, Slovenia