

# TECNATOM'S SIMULATION SOLUTION FOR EDUCATION IN NUCLEAR FUNDAMENTAL PRINCIPLES

24<sup>th</sup> May 2016 Antonio Sancho, Daniel Suarez, Elena Gil



# Learning Station

# TRAINING SIMULATORS

Full scope simulators / Generic simulators



CUSTOM MODELS

CUSTOM HW PANELS

**SPECIFIC PRODUCT** 

**SIMPLIFIED SCOPE** 

**MODELS ADAPTATION** 

**NEW INTERFACES** 





Generic PWR simulator

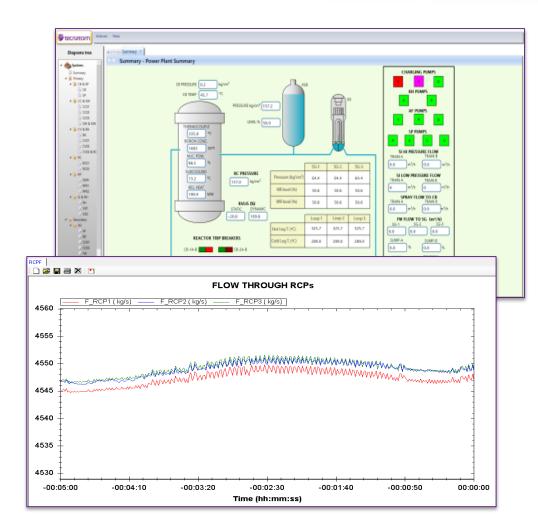
Simulator optimized for education and training in the fundamental principles of operation of a generic PWR power plant

One computer with six 23" monitors executes all the different applications

### Support applications

- Process diagrams
- Trending tool
- 3D visualization tool
- 3D generic components
- Training exercises tool
- Advanced alarm system






Process diagrams & trends

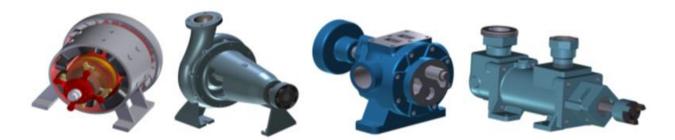
Process diagrams of the 26 systems in the generic nuclear power plant according to their flow and instrumentation diagrams:
44 different diagrams
(10 summary + 34 interactive)

**Trends** to follow the evolution of the various parameters or properties

222 preselected variables





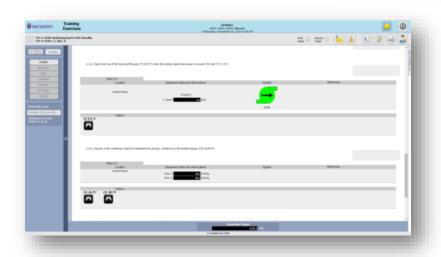

3D primary circuit visualization tool & generic components

The **3D primary circuit visualization tool** monitors the reactor vessel, steam generators, pressurizer and primary loops

Components can be made transparent and different flow regimes and properties can be observed



3D scan of the parts of the **generic components** scanned at Tecnatom's training facility






Training exercises tool & Advanced alarm system

The **Training Exercises Tool**helps the students execute
the training exercises by following
the procedures in a webpage
with feedback from the simulation

Two different types of exercises: Novice & Experienced





The **Advanced Alarm System** displays the active alarms in two different ways:

Listed by time or in 31 panalarms







Different approach to the conventional training

### Learning methods

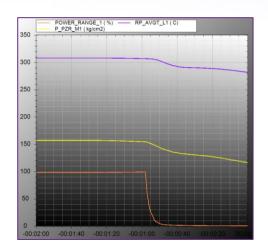
- Demonstration mode
- Operation mode

### Configurations

- An instructor and several students with the same scenario
- Each student with an independent scenario

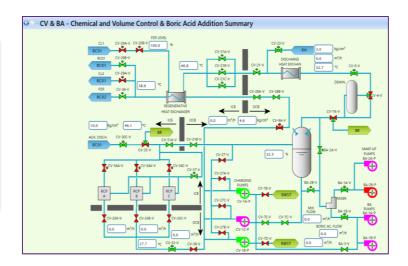
### Approaches

- A priori knowledge justification
- A posteriori knowledge justification



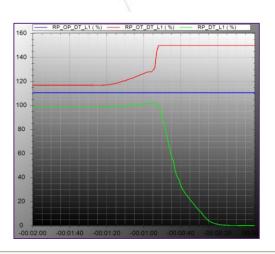



### **Examples of applications**


### **Nuclear Reactor Fundamentals**

From an initial condition corresponding to MODE 1, load variations with and without the control rods movement enabled, variations in reactivity are taught.




### **Plant Systems**

Interactions between systems are shown. Letdown temperature control actuation after a change in the charging flow, turbine runback after a main feed water pump trip from 100%.





### **Examples of applications**



### **Thermal-hydraulics**

Learning station is used to show the evolution of over-temperature (OTDT) and over-power (OPDT) trip set-point after variation of plant conditions. It helps to teach what the thermal balance is and its evolution.

### **Accident analysis**

Different severities of ruptures in the primary circuit (LOCA) or in the secondary circuit show different and very specific evolution of the main variables, such as pressure or void fraction. These and other particularly important parameters are displayed in the 3D primary visualization tool for the student to easily visualize the transient evolution







# **Plant personnel training**

|                   | PLANT<br>OPERATORS | OPERATORS<br>INITAL<br>TRAINING | SUPERVISORS<br>INITAL<br>TRAINING | OPERATORS<br>REQUALIFICATION |
|-------------------|--------------------|---------------------------------|-----------------------------------|------------------------------|
| INTRODUCTION      | ✓                  | ✓                               |                                   |                              |
| SYSTEMS           | ✓                  |                                 |                                   |                              |
| CONTROLS          | ✓                  | ✓                               |                                   |                              |
| TRANSIENT THEORY  |                    | $\checkmark$                    | ✓                                 | $\checkmark$                 |
| SPECIFIC SUBJECTS |                    | ✓                               | ✓                                 | ✓                            |







### **CONCLUSIONS**

### **Advantages & Benefits**

Benefits to the education and training in the nuclear technology:

- ✓ Training of different profiles with different backgrounds
- ✓ Students without in-depth prior knowledge of the plant systems are able to perform exercises with the complete plant model
- ✓ The complex phenomena that occurs in the reactor is more easily understood
  by using 3D visualization and trends
- ✓ Having a validated PWR model in any classroom
- ✓ Affordable for Universities and training centres







@tecnatom

@tecnatom\_aero





www.tecnatom.es

### "@2016 Tecnatom, S.A.

Todos los derechos reservados. El contenido de esta obra está protegido por la Ley y no podrá ser reproducida, ni en todo ni en parte, ni transmitida, ni registrada por ningún sistema de recuperación de información, en ninguna forma ni por ningún medio, sin el consentimiento previo y por escrito de Tecnatom, S.A. y de sus autores.

Tecnatom y el logotipo de Tecnatom son marcas registradas de Tecnatom, S.A."