

An Amazing First Ten Years For The Nuclear Technology Education Consortium

John Roberts
School of Physics and Astronomy
The University of Manchester

NESTet 2016 Berlin, Germany 25th May 2016

Imperial College London

UK Nuclear Sites

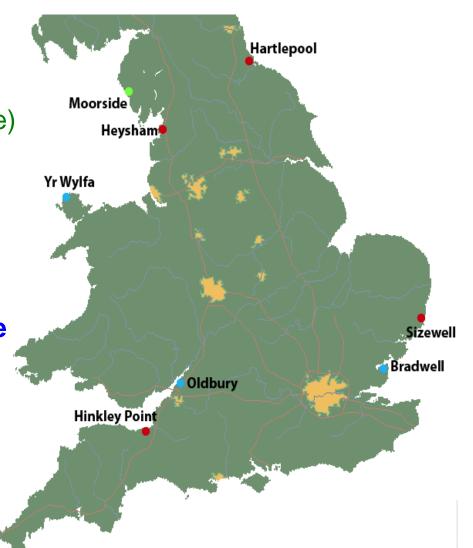
DECOMMISSIONING

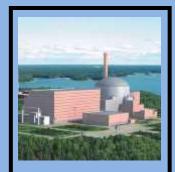
26 Magnox Reactors2 Fast Reactors

OPERATIONAL

14 AGRs 1 PWR

9.6 GWe Total Capacity




21st Century UK Reactors

EDF (Areva, CGN, CNNC) Horizon (Hitachi) NuGeneration (Toshiba and Engie)

Bradwell, Essex
Hartlepool
Heysham, Lancashire
Hinkley Point, Somerset
Oldbury, South Gloucestershire
Moorside, Cumbria
Sizewell, Suffolk
Wylfa, North Wales

- ~ 16 GW (?) of new capacity
- ~ 3 GW on each of the five sites
- 2 EPR or 3 AP1000 or ABWRs

Energy
Review:
new build
of
reactors

International collaborations such as GenIV and GNEP

Replacement of Royal Navy's Astute propulsion reactors

National Nuclear Laboratory

Nuclear education & training

Decommiss -ioning and clean-up

Operation and life extension of existing plant

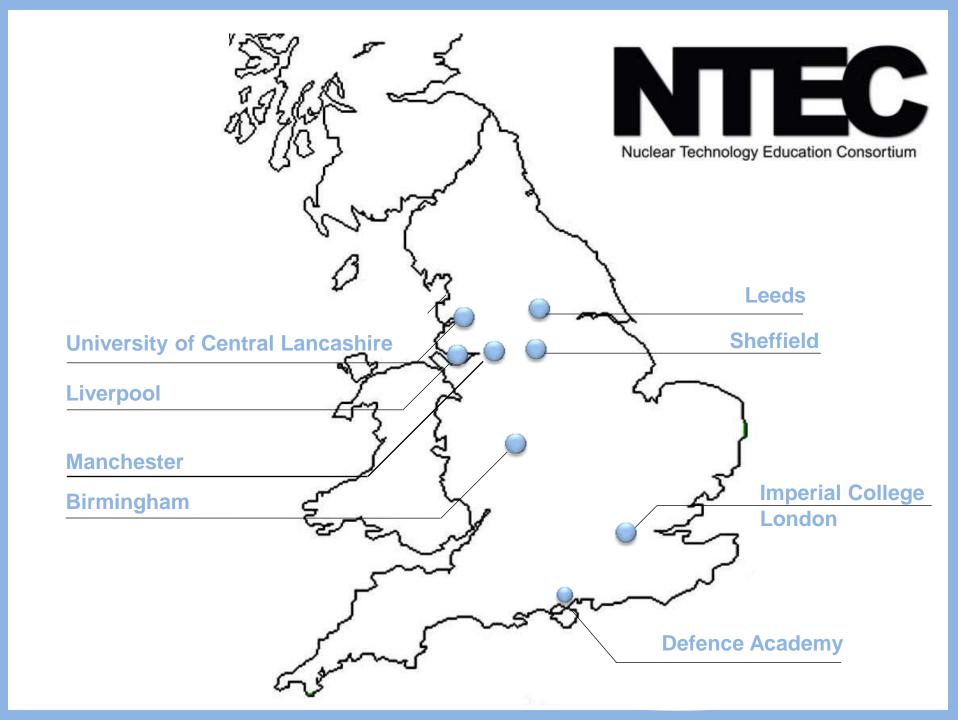
Waste
Disposal
and
possible
repository

Fusion programme and ITER

THE ISSUE in 2005

 A lack of highly educated scientists and engineers entering the UK nuclear industry

THE RESOURCES AVAILABLE


- Pockets of nuclear expertise within UK universities
- High quality educational programmes
 - Science, technology and engineering

THE STAKEHOLDER ANALYSIS

Modular courses suitable for full-time and part-time students

THE SOLUTION PUT FORWARD

NTEC M.Sc. Nuclear Science and Technology

NTEC Modules

•	N01	Reactor	Phy:	sics,	Criticality	/ &	Design	7
---	------------	---------	------	-------	--------------------	-----	--------	---

N02 Nuclear Fuel Cycle

N03 Radiation & Radiological Protection

 N04 Decommissioning / Waste / Environmental Management

N05 Water Reactor Performance and Safety

N06 Reactor Materials & Lifetime Behaviour

N07 Nuclear Safety Case Development

 N08 Particle & Colloid Engineering in the Nuclear Industry

N09 Policy, Regulation & Licensing

 N10 Processing, Storage & Disposal of Nuclear Waste The University of Birmingham

University of Central Lancashire

The University of Manchester

University of Central Lancashire

Imperial College London

The University of Manchester

Defence Academy

University of Leeds

The University of Manchester

The University of Sheffield

Modules available in eLearning format in blue

NTEC Modules

N11 Radiation Shielding
 The University of Liverpool

N12 Reactor Thermal Hydraulics
 Defence Academy

N13 Criticality Safety Management Defence Academy

N21 Geotechnical Aspects of Radioactive Waste University of Central Lancashire

Disposal

N23 Environmental Impact Assessment The University of Manchester

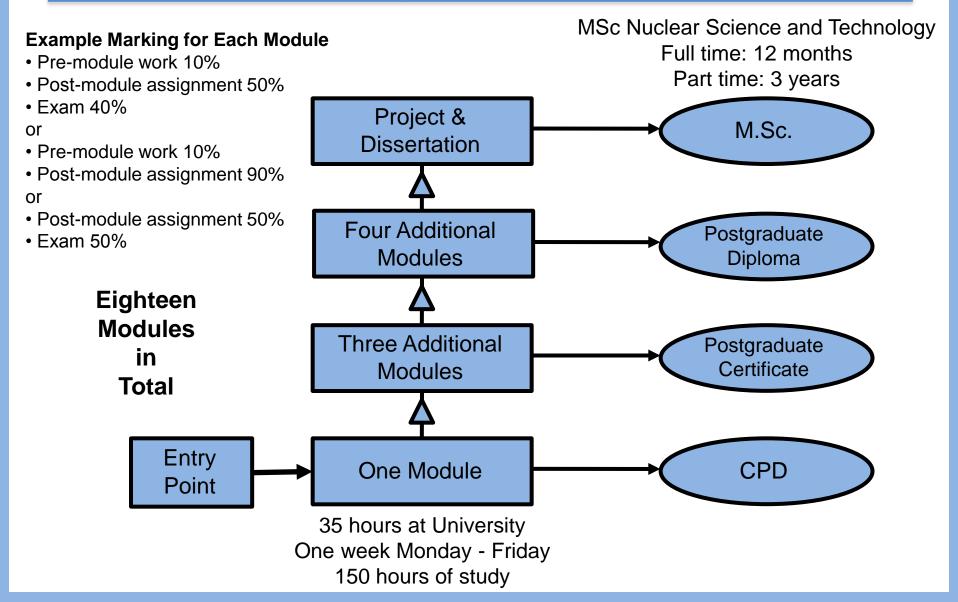
N29 Decommissioning Technology & Robotics TBD

N31 Management of the Decommissioning
 The University of Birmingham

Process

N32 Experimental Reactor Physics
 The University of Manchester

(Atomic Institute of the Vienna


University of Technology or

Czech Technical University, Prague)

Modules available in eLearning format in blue

NTEC Programme Structure

Distance Learning / Residentials

Module	Residential Day	Residential Location
N01 Reactor Physics, Criticality & Design	N/A	N/A
N02 Nuclear Fuel Cycle	12 Nov 2014	UCLan Preston
N03 Radiation & Radiological Protection	11 Sept 2014	Manchester
N04 Decommissioning, Radioactive Waste and Environmental Management	18 Sept 2014	UCLan Westlakes
N12 Reactor Thermal Hydraulics	16 Oct 2014	Manchester
N07 Nuclear Safety Case Development	30 Apr 2015	Manchester
N10 Processing, Storage and Disposal of Nuclear Wastes	14 Apr 2015	Sheffield
N13 Criticality Safety Management	5 Feb 2015	Manchester
N29 Decommissioning Technology & Robotics	25 Feb 2015	Lancaster
N31 Management of the Decommissioning Process	18 Mar 2015	Birmingham

NTEC Delivery Structure

Full Time	One Year	Part Time	Year I	Year 2	Year 3
September		September			
October		October			
November		November			
December		December			
January		January			
February		February			.00
March		March			5,0,
April		April			
May		May			
June	خ	June			
July		July			
August	4,	August			

MY MANCHESTER D

Communication

Assessment

Learning Resources

Course Contacts

Staff Area 2

eLearning Support

COURSE MANAGEMENT

Control Panel

Content Collection

Course Tools

▶ Evaluation

Forade Centre

Users and Groups

Customisation

Packages and Utilities

This section analyses the basic properties of gamma rays using a high-resolution germanium detector and Multi-Channel Analyser (MCA). These detectors are relatively expensive and must be kept cold in operation.

1.2 Basic operation of a germanium detector

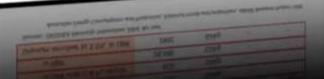
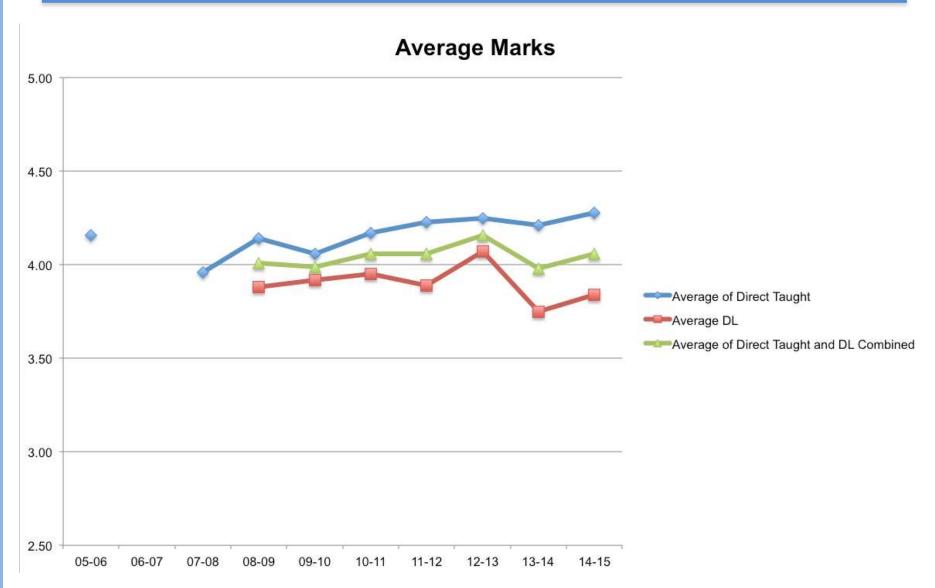

Energy values of various fuels

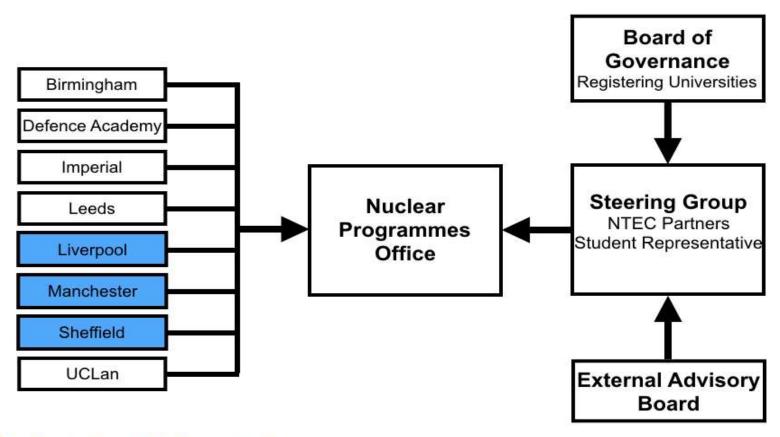
Table 3: Energy conversion: the heat values and carbon coefficients of various fuels

Mathema	heat value		Status	(0)	
Mydragen	121.	Milkg		9	
Principactine	44-46	Make		_	
Oude oil	45-46	Milks	29	70-71 uM	
	37-39	Mill			
Methanol	22	Make			
Liquefied petroleum gas (LPG)	49	Mike	81	State	
Natural gas IUX; USA, Australia)	30-29	Miles		\$1 gM	
(Cinida)	37	Milmi			
Resid	34	Misi			
ax UNG* (Australia)	.55	Milita			
Burd black coal SEA orferons	>219	Milks			
(Australia and Canada)	24-32	Miks	67	90 gM	
Sub-bituminous coal (RA sinferior)	17.4-23.9	Make			
(South & West Australia)	125-195	Milkg			
Lightlebrown (cell IEA defense)	417.A	Milkg			
(Autolian average)	9.7	Mike	25		
Sley Yang, Australial	8.15	Militig		1.25.1g5W	
Fermood idyl	.16	Milkg	42	94 g/M	
Natural unanum, in LWW	500	GINg			
in LVAR with U & Pu necycle	650	63%g			
	29,000	Gifig	7.6	-	
in 1981 Unansen anniched to 3.5%, in USB	3900	Silky			

Source: GECD/EX Diversity Information 2004, for your


Australian Design Commission and Production, Natural Street, and projections, AAASS Street (1986)

Distance Learning Comparison



Quality Control

- Comprehensive Student Feedback
 - Module Leaders have to respond
 - Feedback Analysis and Interpretation
- Part-time students also feedback through their company representative on the External Advisory Board
- Module Review
 - Each module is reviewed by a lecturer from one of the other partner universities
- Board of Governance

Management Structure

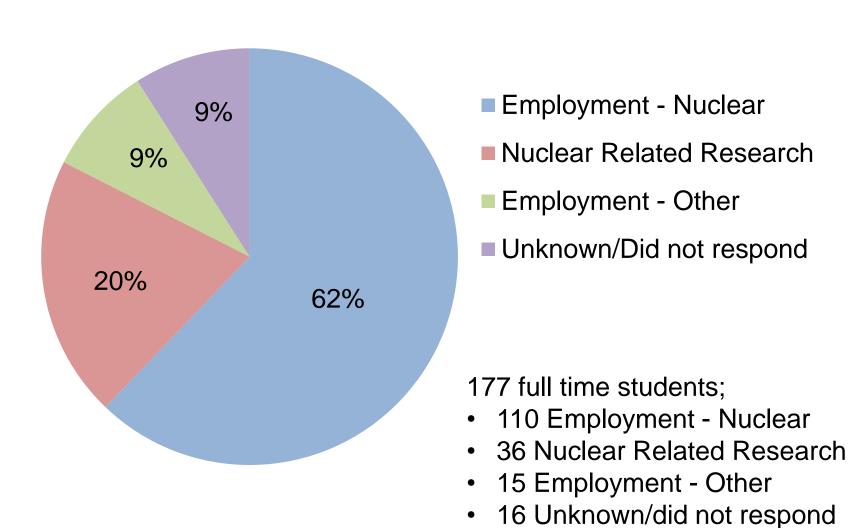
Registering Universities

Accreditation

- The NTEC MSc is accredited by
 - Institution of Engineering and Technology (IET)
 - Institution of Mechanical Engineers (IMechE)
 - Energy Institute (IE)
 - Institute of Materials, Minerals and Mining (IoM³).
- Accreditation Process with the IOP has started
- Endorsed by the Nuclear Institute

Partnership with Industry

- Modules designed in partnership with industry
- External Advisory Board
- Industry location for projects
- Short-course format optimised for industry
- Industry lecturers support the programme
- CPD income supports full-time students
- Industry recruitment of NTEC students is the real test



Full-time Student Destinations

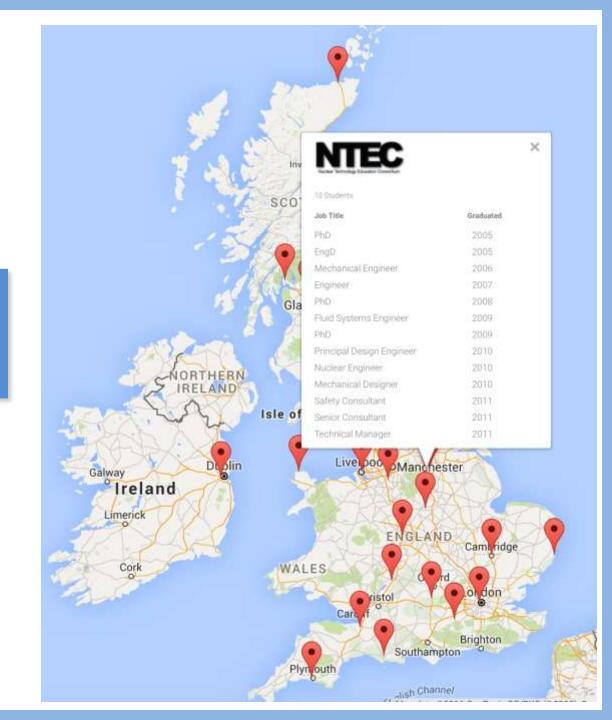
Student Destinations

Since 2005

62% nuclear industry

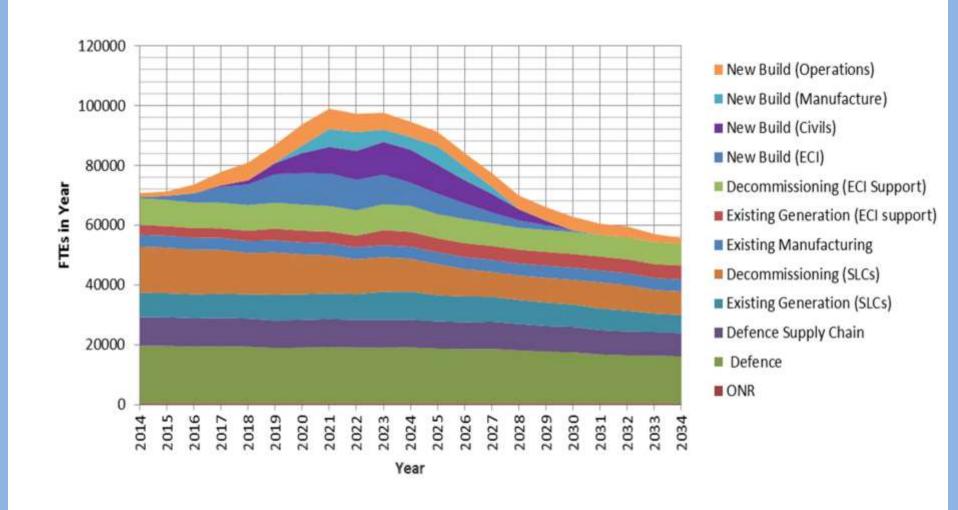
20% further education

9% other professions


Student Destinations

Since 2005

62% nuclear industry


20% further education

9% other professions

Civil and Defence Nuclear Workforce Demand

www.ntec.ac.uk

j.w.roberts@manchester.ac.uk