

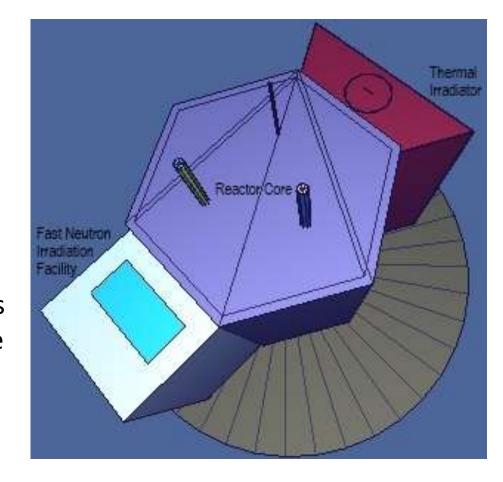
PyNIC: Python-Based Neutron
Interaction Calculator for Accurate
Activation Predictions in TRIGA
Experiments and Student Training

Greg Moffitt, JoCee Porter, Tatjana Jevremovic 5/25/16





#### Outline


- NAA at University of Utah TRIGA Reactor
- PyNIC Layout and Use
- TRIGA Reactor Info and Irradiation ports
- MCNP6 Simulations of University of Utah TRIGA reactor
- PyNIC Code Benchmarking
- Future Work





#### NAA at University of Utah TRIGA Reactor

- Neutron activation analysis (NAA) is performed in the University of Utah TRIGA reactor (UUTR) for a wide range of samples
  - Part of student training and student research
- Accurate pre-calculations leads to safe irradiations where dose is limited and activities are maintained in a range for counting on HPGe detectors





# Python-Based Neutron Interaction Calculator (PyNIC)

$$A_{D}(t) = m \left(\frac{N_{A}}{A_{m}}\right) A_{\%} \left(1 - e^{-\lambda_{D} t_{irr}}\right) e^{-\lambda_{D} t_{decay}} \int_{0}^{\infty} \Phi(E) \sigma_{p}(E) dE$$

- Entire neutron absorption crosscross section included for each builtin nuclide
- Calculates the activity
- Calculates the dose rate for y at 1 ft
- Currently contains 240 nuclides
- Once validated, PyNIC can be applied to any neutron energy spectrum

 $\Phi(E)$  – neutron flux at energy E (n/(cm<sup>2</sup>\*s)  $\sigma_p$  – radiative capture cross section of parent isotope (cm<sup>2</sup>)

m – mass of sample (g);

 $N_A$  – Avogadro's number;

 $A_m$  – atomic mass (g/mole),

A<sub>%</sub> - atomic abundance ratio

 $t_{irr}$  – irradiation time (sec)

 $t_{decav}$  – decay time (sec)

 $A_D(t)$  – activity of daughter isotope (Bq)

 $\lambda_D$  – decay constant of daughter isotope (s<sup>-1</sup>)



### PyNIC Input - Irradiation Parameters

- GUI developed to facilitate the use of PyNIC by any user
  - Aids students as they prepare their own NAA irradiations (with final approval by reactor supervisor)
- User enters/selects:
  - sample mass,
  - irradiation time,
  - decay time,
  - neutron beam





## **PyNIC GUI**

| ron Interaction Simulation Tool, version 1. | 00                                |                                   |    |   |
|---------------------------------------------|-----------------------------------|-----------------------------------|----|---|
| Sample Mass:                                | 0.5                               | (g)                               |    |   |
| Irradiation time:                           | 5                                 | (minutes)                         |    |   |
| Decay time:                                 | 1                                 | (minutes)                         |    |   |
| Multiplication factor:                      | 1                                 |                                   |    |   |
| Neutron beam:                               | UUTR FNIF - 1 kW →                |                                   |    |   |
| Nuclide #1:                                 | Ti-50                             | Percent mass abundance in sample: | 50 | % |
| Nuclide #2:                                 | Co-59                             | Percent mass abundance in sample: | sd | % |
| Nuclide ≠3:                                 | none —                            | Percent mass abundance in sample: | 0  | % |
| Nuclide ≠4:                                 | none                              | Percent mass abundance in sample: | 0  | % |
| Nuclide #5:                                 | none                              | Percent mass abundance in sample: | 0  | % |
| Nuclide #6:                                 | none —                            | Percent mass abundance in sample: | 0  | % |
| Nuclide #7:                                 | none —                            | Percent mass abundance in sample: | 0  | % |
| Nuclide #8:                                 | none —                            | Percent mass abundance in sample: | 0  | % |
| Nuclide #9:                                 | none                              | Percent mass abundance in sample: | 0  | % |
| Nuclide #10:                                | none                              | Percent mass abundance in sample: | 0  | % |
|                                             |                                   |                                   |    |   |
| MCNPX HPGe Input nps:                       | 1eB                               |                                   |    |   |
| HPGe count time:                            | 10                                | (minutes)                         |    |   |
| Perform Calculations                        | Generate MCNPX HPGe Input Files   |                                   |    |   |
| Run MCNPX HPGe Input File                   | Run MCNPX HPGe Instant Input File |                                   |    |   |
| Generate HPGe Report                        | Generate HPGe Instant Report      |                                   |    |   |





## **PyNIC: Running Calculations**

Perform Calculations

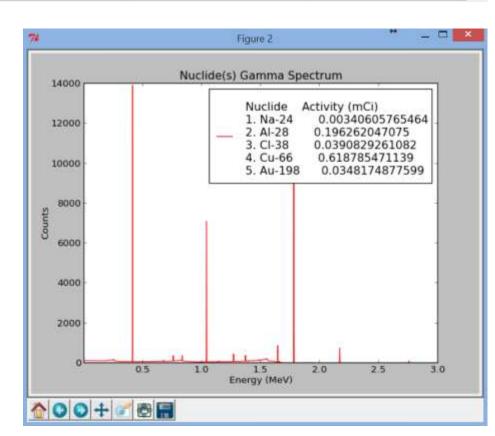
Generate MCNPX HPGe Input Files

Run MCNPX HPGe Input File

Run MCNPX HPGe Instant Input File

Generate HPGe Instant Report

- Perform Calculations button:
  - Prints activity and dose rate calculations to command prompt
  - Generates a report of activity, dose rate, 5 most abundant gamma emissions from daughter product decay, prompt gamma emission rates and gamma ray energies
  - Result can be used in MCNPX simulation of germanium detector response

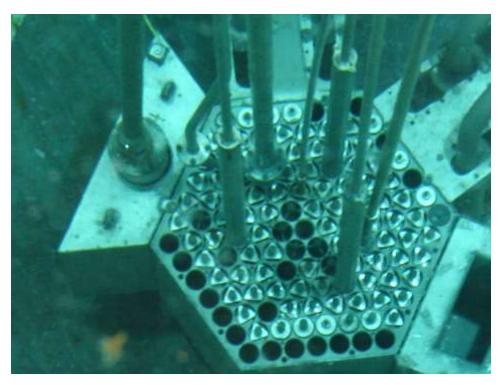





## PyNIC: MCNPX Gamma Spectrum Simulations

Perform Calculations Generate MCNPX HPGe Input Files Run MCNPX HPGe Input File Run MCNPX HPGe Instant Input File Generate HPGe Instant Report

- Generate and run MCNPX
   HPGe detector input based
   on the predicted gamma
   emissions from the
   activated sample
  - Creates input file
  - Runs file (MCNPX must be installed)
  - Parses MCNPX output file and plots gamma spectrum



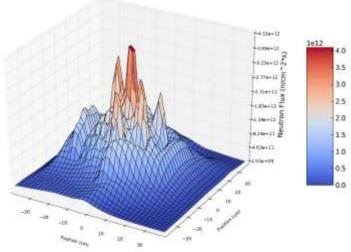




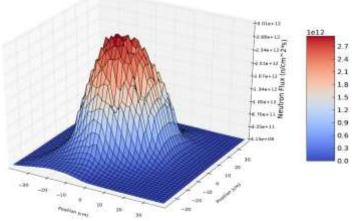

#### **UUTR Irradiation Ports**

- UUTR (licensed to 100 kW)
   4 irradiation ports
  - Thermal Irradiator (TI)
  - Central Irradiator (CI)
  - Pneumatic Irradiator (PI)
  - Fast Neutron Irradiator Facility (FNIF)
- TI flux of  $7.3x10^{11}$  n/(cm<sup>2\*</sup>s)




University of Utah TRIGA Reactor






#### MCNPX Simulation of UUTR

- 2620 neutron fluence tally bins from 0 to 10 MeV for neutron fluence tally (F4:n)
- PyNIC can use any neutron energy bin structure
  - User can make energy bin structure as fine or as course as needed for their application



**UUTR Thermal Neutron Flux** 



**UUTR Fast Neutron Flux** 





## PyNIC Benchmarking



HPGe detector with Canberra lead and copper shielding

- Samples irradiated in the thermal irradiator port in the UUTR
- Materials irradiated
  - Ni wire
  - Co wire
  - Ti wire
  - W wire
- Samples counted on a HPGe detector



#### NAA Measurement Results

- Ni and Ti results agree
  with predictions within
  +/-8.5% for all points
- PyNIC over predicts the activity for W and Co samples by ~20-30% for most experiments

|          |         |          | 4000000  |              |  |
|----------|---------|----------|----------|--------------|--|
| Material | Reactor | Measured | PyNIC    | % Difference |  |
|          | Power   | Activity | Activity |              |  |
|          | (kW)    | (uCi/g)  | (μCi/g)  |              |  |
| Ni       | 1       | 0.23     | 0.25     | 7.4%         |  |
|          | 10      | 2.8      | 3.0      | 8.5%         |  |
|          | 30      | 7.5      | 7.6      | 1.6%         |  |
|          | 50      | 13       | 12       | -0.9%        |  |
|          | 70      | 18       | 18       | 1.1%         |  |
|          | 90      | 22       | 23       | 4.0%         |  |
| Ti       | 1       | 3.7      | 3.8      | -1.4%        |  |
|          | 10      | 39       | 38       | -2.8%        |  |
|          | 30      | 111      | 114      | 2.0%         |  |
|          | 50      | 202      | 189      | -6.3%        |  |
|          | 70      | 264      | 265      | 0.4%         |  |
|          | 90      | 326      | 341      | 4.3%         |  |
| W        | 1       | 1.50     | 1.20     | 24.6%        |  |
|          | 30      | 136      | 104      | 30.6%        |  |
|          | 50      | 75       | 74       | 2.2%         |  |
|          | 70      | 106      | 84       | 26.5%        |  |
|          | 90      | 136      | 106      | 27.9%        |  |
| Со       | 1       | 6.7      | 7.7      | 23.1%        |  |
|          | 50      | 35       | 39       | 17.7%        |  |
|          | 90      | 61       | 70       | 17.0%        |  |





#### Future Work

- Additional NAA experiments in UUTR
- Add post calculation functionality to get starting material concentration
- Add secondary decay daughter product gamma emissions





## Acknowledgements

- This research is being performed using funding received from DOE through the Integrated University Program
- Tristalee Williams
- Ryan Schow
- Steve Burnham

