Long-term operation of industrial-academic research and education

Hans Henriksson, SKC, Sweden

Nuclear technology in collaboration between industry and academia

- Created in 1992 at KTH: soon 25 years!
- Swedish NPPs and Fuel manufacturer
- Research projects
 - Nuclear technology
 - Ageing of materials
 - Fuel development
- Education
 - M.Sc/B.Sc. programmes
 - Under-graduate courses
 - Advanced courses
- Total budget:3,5 MEUR /3 year agreement

Ringhals AB

Hans Henriksson, SKC

May 25, 2016

Vision and goals

SKC shall provide long-term support to **securing knowledge** and **competence development** at an academic level for the Swedish nuclear technology programs. This shall be a basis for providing resources to the Swedish nuclear industry and its regulators.

It means that SKC will contribute to a **safe, effective** and thus **reliable nuclear energy production**, which is an important part of the Swedish energy supply.

- Encourage students to choose nuclear technology education
- Provide resource of qualified personnel through attractive education
- Develop strong research groups in nuclear technology
- Perform research on account of the end-users of the SKC

SKC and the human capital needs from industry

Budget and activities

Present agreement runs for three years: 2014 - 2016

Total budget: 3,5 MEUR

Fixed funding: 0,5 MEUR/year (for three universities)

Project funding: 0,6 MSEK/year

Main project: Collaboration on Material, Ageing and Fuel: 0,4 MEUR/year

Annual Symposium:

Symposium 2015: 60 participants, 3 industrial talks, 14 PhD presentations, dinner, prizes

Participation at career days:

ARMADA (KTH), CHARM (Chalmers), UTNARM (Uppsala University)

The Sigvard Eklund Prize

- SKC rewards students the Sigvard Eklund Prize in three categories:
 - best BSc thesis work,
 - best MSc thesis work, and
 - best PhD thesis.

Winners 2015:

(from left) Cheuk Wah Lau (PhD), Giulio Imbalzano (MSc), Hans Henriksson (Director of SKC) Klara Insulander Björk (PhD), and Johan Larsson (BSc).

Research areas with direct industrial impact

Main programmes

- Reactor Physics
 - Reactor Diagnostics, Detectors and Measurement
 - Core Physics
- Nuclear Power Plant Technology and Safety
 - Plant Dynamics
 - Thermal Hydraulics
- Materials and Chemistry
 - Chemistry, Material Physics and Engineering
 - Fuel Technology

Project MÅBiL (Material, Ageing, Fuel):

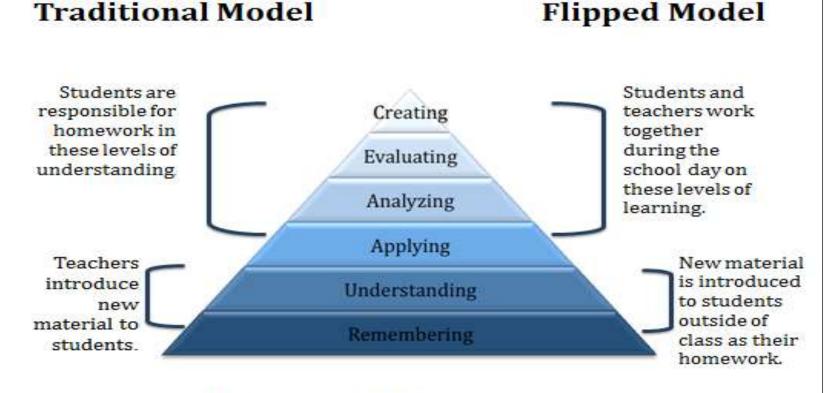
- Study of materials with respect to Accident Tolerant Fuels (ATF)
- Study of materials with respect to ageing
- Study of nuclear physical processes during normal and transient conditions

Examples of education funded via SKC

Chalmers: International Master in Nuclear Engineering

- Engineering oriented and aims at students with backgrounds in physics, chemistry, mechanical or electrical engineering.
- The only nuclear education in Sweden combining physics and chemistry in one educational program.

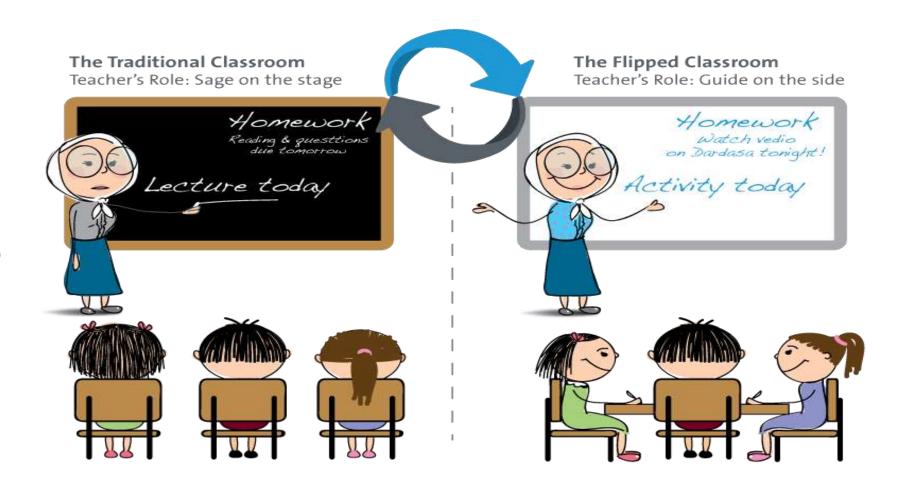
KTH: Master's Programme in Nuclear Energy Engineering:


- Several elective courses choose from, and summer school activities (ex. CLAB nuclear repository).
- International profile with links to:
 - KIC InnoEnergy EMINE (European Master in Innovative Nuclear Energy Engineering): Dual Diploma with either Universities Paris-Saclay, Paris or Grenoble-INP
 - Dual Diploma with Tsinghua University, Beijing
 - Dual Diploma with KAIST (Korea Advanced Institute of Science and Technology)

Uppsala University: Bachelor of science in nuclear engineering

- Aims at increase volume of employable people available to the nuclear industry
- Cost-efficient training cost for industry
- Reduced need for on-the-job education and training.

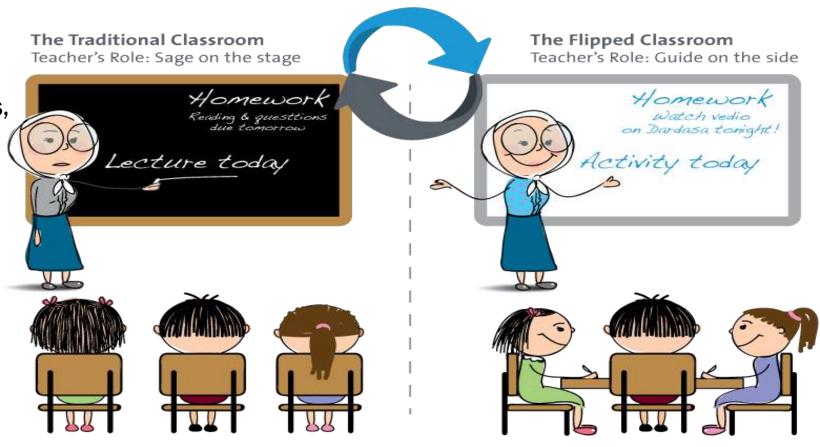
Example of pedagogical approach - Chalmers


- Incentives in flipping:
- Low-order thinking skills triggered in the classroom in the traditional model
- High-order thinking skills triggered in the classroom in the flipped model

Revised Bloom's taxonomy for the cognitive domain (2001)

Pre-class activities (out-of-class):

- Reading the lecture notes
- Watching the webcasts
- Answering the quizzes
- Sending possible questions and feedback to teachers


In-class & Post-class activities:

In-class activities

- Wrap-up sessions:
 brief chapter summary, quizzes,
 peer discussion, additional
 questions
- Tutorials
- (Laboratory exercises)

Post-class activities (out-of-class):

- Discussion fora
- Home assignments
- (Lab reports)

Chain of Class-pedagogy

Attendance of the webcasts

- Individual work
 - Asynchronous interactions with the teachers

- Individual work
- Asynchronous interactions with the teachers

On-line quizzes

Attendance of the wrapup sessions

- Group attendance
- Peer-instruction
- Synchronous interactions with the teachers

- Group attendance
- Peer-instruction
- Synchronous interactions with the teachers

of the tutorials Completion of the home assignments

- Group or individual work
- Peer-instruction
- Asynchronous interactions with the teachers

Hans Henriksson, SKC May 25, 2016

Individual


Study of the

lecture notes

work

IT tools used:

- Learning Management System: Ping-Pong
- Webcast recording and broadcasting: Mediasite
- Live sessions broad-casting and recording: Adobe Connect

E-learning platform for the KTH Master in Nuclear Energy Engineering

E-Learning:

On-line education

New-media education

Computer aided/supported education

Internet based education

Distance Education (partly E-learning)

MOOC:

Massive Open Online Courses — MIT/Harvard initiative. Three software solutions: EdX, Coursera, Udacity

Incentives

Main mission of E-learning at KTH:

- "Campus-based" education supported by E-learning to enhance learning pace and student through-put.
- main platform for "education on demand" and "distance education" for NON-ACADEMIC customers: professional education for nuclear industry.
- **Self quality improvement** of pedagogical level: for example through video recording of lectures is self-stimulating to improve the pedagogical level.
- Improvement of educational level through home assignements and students own activities: "Exerciser/Maple TA" module.
- Instant results of examinations and home/test assignments. Extremely important argument for an effective education. It meets very well students expectations.

Strategy for KTH E-learning platform – Four pillar strategy

Pillar I:

Video navigation

Objective:

- Promotion of the program for potential oplicants
- Navigation unrough the program to select elective courses.

Means: short video clips (pitches) of each course

Pillar II:

Support for Campus education

Objective:

- Support and optimization of "on-campus" education
- Enhanced learning pace and through out.
- Interactivity with students

Means: Video presentations of all lectures and student projects.

"Exerciser" for home assignments, examinations and projects.

E-learning lab instructions

Pillar III:

E-learning for International programs

Objective:

Support for navigation and program insight for exchange students.

Means:

Link to Pillar I and II at KTH and corresponding web-locations at partner Universities.

Live seminars and/or selected lectures of interest.

Pillar IV:

Distance education

Objective:

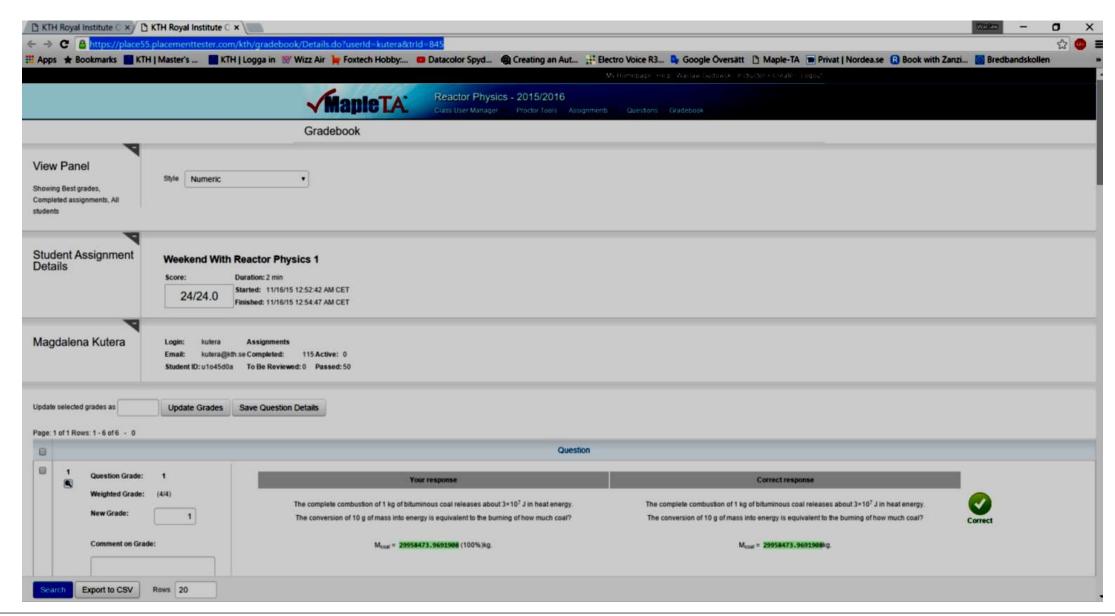
Tailored education and specially developed distance education courses: "education on demand" for non-academic stakeholders

Means:

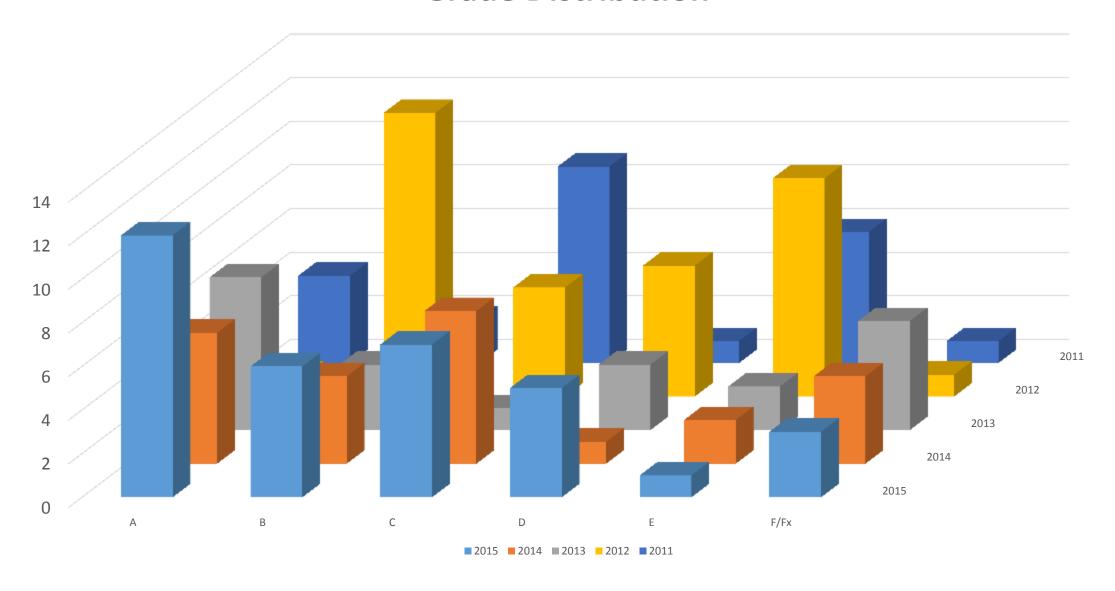
Pillar I and II adopted to distance education.

Webinars: streamed lectures on line.
Interactivity with students

Pillar II: under testing and implementation:


Exerciser module: Maple Software – Maple T/A and next version Maple – Möbius Courses under processing:

Reactor Physics SH2600 (9ECTS) and SH112N (Preparatory course in physics)


FIRST E-LEARNING EXAM AT KTH – January 15, 2016. SUCCESS, in spite of some small problems. Every student got DIFFERENT RANDOMISED problems. No practical risks for copying.

As preparation for this exam: 9 Home Assignments in Maple T/A, each week, corrected and discussed on the spot.

Example from E-learning exam: Maple T/A "Exerciser" tool

Reactor Physics Examination Grade Distribution

Pillars III and IV: more work needed

Pillar III:

E-learning for International programs

Objective:

Support for navigation and program insight for exchange students.

Means:

Link to Pillar I and II at KTH and corresponding web-locations at partner Universities.

Live seminars and/or selected lectures of interest.

Pillar IV:

Distance education

Objective:

Tailored education and specially developed distance education courses: "education on demand" for non-academic stakeholders

Means:

Pillar I and II adopted to distance education.

Webinars: streamed lectures on line.
Interactivity with students

SKC - Swedish Centre for Nuclear Technology

Nuclear technology in collaboration between industry and academia

for many more years to come!

Thank you!

Contact:

Hans Henriksson, skc@kth.se

www.swedishnuclear.se

Forsmarks Kraftgrupp AB

Ringhals AB

Christan Ekberg, Kith: Wadaw Gudowski,

Christan Ekberg, Kith: Wadaw Gudowski,

Henryk Anglart, Ull:

Michael Österlund, Ane Hakansson

W Work